

Unconnected Parallel Universes: Completely Neutral Support

Probabilities from 1 to 0 span support to disfavor

No neutral probability value available for neutral support. 7

Underlying Conjecture of Bayesianism...

Logic of physical chances

\longrightarrow

Logic of all evidence

Completely Neutral Support

[any contingent
$[\mathrm{B}]=\mathrm{I}$
"indifference"
"ignorance"

Argued in some detail in
John D. Norton, "Ignorance and Indifference." Philosophy of Science, 75 (2008), pp. 45-68.
"Disbelief as the Dual of Belief." International Studies in the Philosophy of Science, 21(2007), pp. 231-252.

Justification...
I. Invariance under Redescription using the Principle of Indifference

Equal support for h in equal h-intervals.
rescale h to $h^{\prime}=f(h)$

Equal support for h ' in equal h'-intervals.

$[\mathrm{h}$ in $[0,1] O R \mathrm{~h}$ in $[1,2] \mid \mathrm{B}]=[\mathrm{h}$ in $[0,1] \mid \mathrm{B}]=[\mathrm{h}$ in $[1,2] \mid \mathrm{B}]$

The principle of indifference does not lead to paradoxes.
Paradoxes come from the assumption that evidential support must always be probabilistic.

Justification...

II. Invariance under Negation

Equal (neutral) support for h in [0,1$]$ and outside $[0,1]$.

Equal (neutral) support for h in $[0,2]$ and outside [0,2].

$[\mathrm{h}$ in $[0,1] O R \mathrm{~h}$ in $[1,2] \mid \mathrm{B}]=[\mathrm{h}$ in $[0,1] \mid \mathrm{B}]$

Probabilistic vs. Neutrality of independence (total) support

> For a partition of all outcomes $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$
$\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mid \mathrm{E} \& \mathrm{~B}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mid \mathrm{B}\right)$ all i
For incremental measures of support*
$\operatorname{inc}\left(A_{i}, E, B\right)=0$
Tertiary function
Presupposes background probability measure.

* e.g. $\mathrm{d}\left(\mathrm{A}_{\mathrm{i}}, \mathrm{E}, \mathrm{B}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mathrm{I} \& \mathrm{~B}\right)-\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mathrm{B}\right)$
$\mathrm{s}\left(\mathrm{A}_{\mathrm{i}}, \mathrm{E}, \mathrm{B}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mid \mathrm{E} \& \mathrm{~B}\right)-\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \operatorname{lnot}-\mathrm{E} \& \mathrm{~B}\right)$
$\mathrm{r}\left(\mathrm{A}_{\mathrm{i}}, \mathrm{E}, \mathrm{B}\right)=\log \left[\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mid \mathrm{I} \& \mathrm{~B}\right) / \mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mid \mathrm{B}\right)\right]$
etc.

van Inwagen, "Why is There Anything At All?"
Proc. Arist. Soc., Supp., 70 (1996). pp.. 95-120.
One way Infinitely many ways to be.
not to be.

Probability zero.
"As improbable as anything can be."

Probability one.
As probable as anything can be.

Our Large Civilization

Ken Olum, "Conflict between Anthropic Reasoning and Observations," Analysis, 64 (2004). pp. 1-8.

Fewer ways
we can be in small civilizations.

Vastly more ways
we can be in large civilizations.

- ••
"... [it] predicts with great confidence that we belong to a large civilization."

Our Infinite Space

Informal test of commitment to anthropic reasoning.

Fewer ways Infinitely more ways

we can be
we can be observers in an infinite space.
observers in a
finite space.

Hence our space is infinitely more
likely to be geometrically infinite.

